viernes, 26 de noviembre de 2010

Primer parcial:
Bebibas fermentadas.

Tepache

El término Tepache en México es utilizado para nombrar una bebida obtenida por la fermentación de los azúcares de alguna fruta, es también conocido como Chicha en algunos países del centro y sur de América, se obtenía antiguamente de la fermentación de la masa simple del maíz en agua, aunque hoy en día es más común la proveniente de la fermentación varias tipos de fruta (generalmente cáscaras de piña) y azúcar o piloncillo en agua hervida, la cual se deja fermentar de 4 a 6 días.

Nombre

La palabra tepache procede del nahuatl “tepiatl”, que significa bebida de maíz, ya que como se dijo era elaborada con este cereal aunque hoy en día su versión más conocida es la producida por la mezcla de piña y azúcar.
Es una de las bebidas fermentadas más populares de México, ya que normalmente tiene un muy bajo nivel alcohólico por su forma de elaboración ( menos de 1% Alc. Vol.), su gusto recuerda a la cerveza pero con mucha mayor dulzura; la costumbre de elaborar esta bebida con maíz se continúa en varias comunidades sobre todo indígenas de México, como en los estados de Oaxaca, Guerrero, Puebla, Chihuahua, Sonora, Veracruz, Yucatán, Campeche, Quintana Roo, Tabasco y Chiapas donde con un nivel alcohólico mayor fue objeto para los cultos religiosos de los mayas.
El tepache en la actualidad se obtiene adicionalmente por la fermentación del jugo y la pulpa de varios tipos de frutos dulces como piña, guayaba, manzana, tuna, naranja, etc. el cual se deja fermentar por varios días, dependiendo de lo azucarada de la mezcla, de esta bebida si se deja fermentar más días se obtienen una bebida con mayor nivel alcohólico pero también mayor amargura y acidez en su gusto, al cabo de semanas se termina convirtiendo en vinagre el cual generalmente acaba con las baterías de la fermentación, estos vinagres son de aromas y sabores muy distintivos de acuerdo al tipo de fruto del que provienen.

Receta de como hacer tepache:

Ingredientes:
Las cáscaras de 1 piña grande madura (alrededor de 1 1/2 kg.)
3 litros de agua,
600 gr. de piloncillo (Panela) o azúcar morena
1 ramita de canela de unos 8 cm.
3 clavos de olor


Procedimiento:

Lavar bien la piña, quitar el tallo y cortar rebanar la cáscara para luego cortarla en trozos medianos.
Colocar la cáscara en trozos en un recipiente grande (si es de barro mejor) y agregar 2 litros de agua, el piloncillo, la canela y los clavos. Tapar y dejar reposar en un sitio caliente durante 48 horas. Colar el líquido resultante (el Tepache) y agregar 1 litro de agua y 1/2 de cerveza opcional, dejar reposar otras 12 horas. Colar y añadir 3 cuartos de litro de agua. Servir con cubos de hielo.


Tesguino


Tejuino.
El tesguino (manjar de los dioses huicholes) es una bebida refrescante a base de maíz (fermentado o sin fermentar) y de dulce de caña de azúcar (piloncillo ó panocha). Es muy común encontrarlo en el Occidente de México, gracias a la herencia indígena de los huicholes.
Se bebe con limón, sal y chile piquín al gusto o sin agregarle nada, es de sabor agridulce y con un grado bajo de alcohol. El tejuino es ofrecido por vendedores ambulantes en los pueblos y ciudades de la región es muy poco común encontrarlo en heladerías o neverias.
Hay dos tipos reconocidos: tejuino y tesgüino, el tejuino puede o no tener algo de fermentación no más fuerte que el tepache, el tesgüino es fermentado al máximo para que produzca licor.
También existe dos tipos de tejuino: el tejuino blanco y el tejuino oscuro (está elaborado con piloncillo).
En Nochistlan se llevan a cabo las festividades de San Sebastián (El Güerito). En esta fiesta es tradicional el tejuino, hecho a base de maíz, con la receta de los antiguos caxcanes que poblaban esta región. Cada noche del 17 al 20 de enero se reparte tejuino en cántaros a los asistentes a la fiesta, la cual se realiza en casa de los festejantes. Se hace con un tipo especial de maíz. Tiene un sabor amargo fuerte, es espeso y color café. No se modifica la receta original, se toma natural, es decir, no se le añaden hielos, sal o limón aunque también es originario de Guadalajara y Nayarit.
Hay quienes elaboran el tejuino fermentando masa (maíz en nixtamal, molido para formar un pasta con la que se hacen las tortillas).
hay quienes agregan nieve de limón en sustitución del hielo y el limón. También hay quienes agregan hielo raspado (utilizado para los "raspados" o "nieve raspada") en vez de hielo en trozos.
Los huicholes lo utilizaban principalmente en sus festividades y actividades religiosas. Se recomienda tomarlo en tazas de barro sin brea (recubrimiento utilizado para esmaltar los utensilios de barro)

Recata de como hacer tesguino:

Receta para Hacer Tejuino PicosoIngredientes:
  • Un kilo de masa de maíz o de nixtamal.
  • Azúcar morena o piloncillo, 1 1/2 kilo.
  • Cuatro litros de agua de garrafón.
  • Dos limones.
  • Chile piquín en polvo.
  • Sal marina.
  • Hielo rallado.
Preparación:
  • Tritura el piloncillo.
  • Diluye la masa en poca agua.
  • Calienta el agua hasta que hierva.
  • Gradualmente agrega el azúcar o piloncillo al agua hirviente hasta que se integre.
  • Agrega la masa diluída hasta que se forme una especie de atole.
  • Apaga el fuego.
  • Deja enfriar y tapa la olla.
  • Coloca la vasija en un lugar oscuro y deja reposar su contenido 2 ó 3 días.
  • El tejuino estará listo tan pronto aparezcan burbujas en su superficie. Esto ocurrirá entre le segundo y tercer día.
  • Oxigena el tejuino virtiéndolo de un recipiente a otro.
  • A la hora de disfrutar el tejuino, agrega sal, jugo de limón, hielo picado y el chile en polvo al gusto.
Fermentadores:

Un biorreactor es un recipiente o sistema que mantiene un ambiente biológicamente activo. En algunos casos, un biorreactor es un recipiente en el que se lleva a cabo un proceso químico que involucra organismos o sustancias bioquímicamente activas derivadas de dichos organismos. Este proceso puede ser aeróbico o anaeróbico. Estos biorreactores son comúnmente cilíndricos, variando en tamaño desde algunos mililitros hasta metros cúbicos y son usualmente fabricados en acero inoxidable.
Un biorreactor puede ser también un dispositivo o sistema empleado para hacer crecer células o tejidos en operaciones de cultivo celular. Estos dispositivos se encuentran en desarrollo para su uso en ingeniería de tejidos.
En términos generales, un biorreactor busca mantener ciertas condiciones ambientales propicias (pH, temperatura, concentración de oxígeno, etcétera) al organismo o sustancia química que se cultiva. En función de los flujos de entrada y salida, la operación de un biorreactor puede ser de tres modos distintos:
  1. Lote (Batch)
  2. Lote alimentado (Fed-Batch)
  3. Continuo o quimiostato
Diseño de biorreactores
El diseño de biorreactores es una tarea de ingeniería bastante compleja. Los microorganismos o células son capaces de realizar su función deseada con gran eficiencia bajo condiciones óptimas. Las condiciones ambientales de un biorreactor tales como flujo de gases (por ejemplo, oxígeno, nitrógeno, dióxido de carbono, etc.), temperatura, pH, oxígeno disuelto y velocidad de agitación o circulación, deben ser cuidadosamente monitoreadas y controladas.
La mayoría de los fabricantes industriales de biorreactores usan recipientes, sensores, controladores y un sistema de control interconectados para su funcionamiento en el sistema de biorreacción (ver PLC).
La misma propagación celular (fenómeno conocido en inglés como Fouling) puede afectar la esterilidad y eficiencia del biorreactor, especialmente en los intercambiadores de calor. Para evitar esto, el biorreactor debe ser fácilmente limpiable y con acabados lo más sanitario posible (de ahí sus formas redondeadas).
Se requiere de un intercambiador de calor para mantener el bioproceso a temperatura constante. La fermentación biológica es una fuente importante de calor, por lo que en la mayor parte de los casos, los biorreactores requieren de agua de enfriamiento. Pueden ser refrigerados con una chaqueta externa o, para recipientes sumamente grandes, con serpentines internos.
En un proceso aerobio, la transferencia óptima de oxígeno es tal vez la tarea más difícil de lograr. El oxígeno se disuelve poco en agua (y aún menos en caldos fermentados) y es relativamente escaso en el aire (20,8 %). La transferencia de oxígeno usualmente se facilita por la agitación, que se requiere también para mezclar los nutrientes y mantener la fermentación homogénea. Sin embargo, existen límites para la velocidad de agitación, debidos tanto al alto consumo de energía (que es proporcional al cubo de la velocidad del motor) como al daño ocasionado a los organismos debido a un esfuerzo de corte excesivo.
Los biorreactores industriales usualmente emplean bacterias u otros organismos simples que pueden resistir la fuerza de agitación. También son fáciles de mantener ya que requieren sólo soluciones simples de nutrientes y pueden crecer a grandes velocidades.
En los biorreactores utilizados para crecer células o tejidos, el diseño es significativamente distinto al de los biorreactores industriales. Muchas células y tejidos, especialmente de mamífero, requieren una superficie u otro soporte estructural para poder crecer y los ambientes agitados son comúnmente dañinos para estos tipos de células y tejidos. Los organismos superiores también requieren medios de cultivo más complejos.

Clasificación de los Biorreactores

Clasificación Operativa

Tanto biorreactores como fermentadores se clasifican primeramente de acuerdo al modo de operación: discontinuo, semicontinuo, continuo. Esta es una clasificación operativa y se aplica a cualquier reactor, sea químico o biológico (biorreactor). En los reactores biológicos el modo de operación define el sistema de cultivo que es el mismo y delimita la clasificación procesal-productiva del bioproceso (cultivo). Al operar un biorreactor en una determinada categoría (discontinuo, semicontinuo, continuo), automáticamente queda determinado el modo de cultivo del sistema y se definen los parámetros y las características operativas y de diseño que intervienen en el proceso productivo del sistema.

Clasificación Biológica

Los sistemas biológicos deben interaccionar con el ambiente externo para poder crecer y desarrollarse; es por eso que los biorreactores se clasifican biológicamente de acuerdo al metabolismo procesal del sistema de cultivo: anaeróbico, facultativo, aeróbico. Los bioprocesos de cultivo y las fermentaciones están basados en el metabolismo celular del cultivo. El metabolismo define los parámetros y características operativas-biológicas de diseño y de operación del biorreactor. Estas características son las que intervienen en la parte biológica del sistema y tienen que ver con el crecimiento, productividad y rendimiento del cultivo; por lo que, definen la clasificación biológica-procesal del sistema de cultivo.

Clasificación Biológica-Operativa

Ambas clasificaciones; la biológica y la operativa, son procesalmente interdependientes y en su conjunto afectan el diseño final del biorreactor. Al conjuntarse ambas clasificaciones, se conjuntan también la función operativa y la biológica para establecer entre ambas un propósito de utilización, el modo de cultivo y el bioproceso. Siendo el propósito de utilización, el destino de cultivo del biorreactor; para qué tipo de cultivo va a ser utilizado el biorreactor; el modo de cultivo es sinónimo de sistema de cultivo y el bioproceso es en sí, todo el proceso.

Biorreactores y tipos de cultivo

Los sistemas biológicos que determinan el metabolismo celular de cultivo y el modo procesal-biológico del sistema son:
Células y microorganismos anaeróbicos
Bacterias en su gran mayoría, son microorganismos de metabolismo degradativo (catabólico); generalmente unicelulares, estos microorganismos son autónomos y nutricionalmente independientes (autótrofos); sus células (cuerpos) no respiran (no utilizan la glucólisis para la respiración celular), en cambio, utilizan vías alternas, donde una molécula orgánica, producida durante el proceso metabólico (catabolismo), es utilizada como aceptor de electrones, en un proceso bioquímico conocido como respiración oxidativa; esta molécula es reducida a producto orgánico en un proceso comúnmente denominado fermentación.

Células y microorganismos facultativos

Son ambivalentes, tienen la capacidad de vivir o sobrevivir entre ambientes: aeróbico (presencia de oxígeno) y anaeróbico (ausencia de oxígeno); son microorganismos de metabolismo mixto por lo que, pueden tanto degradar (catabolismo) como construir (anabolismo) materia orgánica, a partir de diferentes sustratos (materia prima), tanto orgánicos como inorgánicos. Pese a su versatilidad, sus mayores representantes son microorganismos que presentan relaciones parásitas o simbiontes tales como: hongos y levaduras, por lo que no son muy extensos.

Células y microorganismos aeróbicos

Pertenecen en su mayoría al Reino Eucariota – pero también los hay procariota – son microorganismos y células que respiran (utilizan la glucólisis como forma de respiración celular); por lo que su metabolismo es constructivo (anabólico) y deben obtener sus nutrientes de diferentes fuentes. Sus principales grupos están representados por: bacterias y microorganismos aeróbicos, plantas y animales; cuyas células se puedan cultivar en suspensiones celulares o bien, en diferentes arreglos artificiales o modificadas.
A continuación algunos de los posibles sistemas de cultivo que se pueden realizar y el tipo de biorreactor asociado a cada uno:

Cultivos Microbianos Anaeróbicos - Fermentador Bacterial (CO2)

Los microorganismos de metabolismo anaeróbico son los más simples de todos, tan solo necesitan de un medio de cultivo adecuado, agitación vigorosa y cierta cantidad de CO2 (dióxido de carbono) disuelto (COD) para crecer y multiplicarse.

Cultivos Microbianos Facultativos – Fermentador Bacterial

Los microorganismos facultativos toleran la presencia oxígeno en bajas concentraciones y además de un sustrato adecuado, sólo requieren agitación moderada y un medio de cultivo para crecer y desarrollarse.

Cultivos Microbianos Aeróbicos – Fermentador Bacterial (O2)

Los microorganismos aeróbicos necesariamente requieren la presencia de oxígeno (aire) disuelto (OD) para sobrevivir; además, agitación moderada y un medio de cultivo rico en nutrientes para poder crecer y desarrollarse.

Cultivos Celulares Aeróbicos y Facultativos – Fermentador Micótico (CO2)

Los cultivos celulares se diferencian de los bacteriales (microbios) en que no son microorganismos procariota, son eucariota. Son microorganismos aeróbicos o facultativos pertenecientes al Reino Fungi (hongos y levaduras), generalmente llamados micóticos, requieren de la presencia de CO2 disuelto en el medio como sustrato limitante de la velocidad de reacción y generan estructuras reproductivas muy particulares. Un biorreactor es recipiente o sistema que mantiene un ambiente biológicamente activo. En algunos casos, un biorreactor es un recipiente en el que se lleva a cabo un proceso químico que involucra organismos o sustancias bioquímicamente activas derivadas de dichos organismos. Este proceso puede ser aeróbico o anaeróbico. Estos biorreactores son comúnmente cilíndricos, variando en tamaño desde algunos mililitros hasta metros cúbicos y son usualmente fabricados de acero inoxidable.
Un biorreactor puede ser también un dispositivo o sistema empleado para crecer células o tejidos en operaciones de cultivo celular. Estos dispositivos se encuentran en desarrollo para su uso en ingeniería de tejidos.
En términos generales, un biorreactor busca mantener ciertas condiciones ambientales propicias (pH, temperatura, concentración de oxígeno, etcétera) al elemento que se cultiva. En función de los flujos de entrada y salida, la operación de un biorreactor puede ser de tres modos distintos:
Lote (Batch) Lote alimentado (Fed-Batch) Continuo o quimiostato

Cultivos Celulares Aeróbicos Estrictos – Fermentador con Aireación (O2)

El cultivo de microorganismos celulares (no bacteriales) aeróbicos estrictos requiere la presencia de oxígeno disuelto en el medio de cultivo para el metabolismo celular; así como una adecuada agitación.

Células Vegetales en Suspensión – biorreactor de Levantamiento por Aire (O2) en Régimen Turbulento (Re≥3000)

Las células vegetales pueden ser cultivadas en suspensiones celulares: pequeños agregados celulares que se suspenden en el medio de cultivo mediante agitación. Dado que las células vegetales respiran, el diseño del biorreactor debe incorporar una línea de aireación (aire) para suministrar oxígeno disuelto (OD) al medio de cultivo. El diseño debe contar con agitación vigorosa, pues los agregados celulares vegetales tienden a agruparse (clusters) y de alcanzar gran tamaño y peso, precipitarían. Por eso, la operación de este tipo de biorreactores debe ser en régimen turbulento (Re≥3000). Los biorreactores para células vegetales en suspensión generalmente son diseñados con un mecanismo de levantamiento por aire “air lift” que combina una agitación vigorosa (turbulenta) con una adecuada aireación (oxígeno disuelto) del medio de cultivo.

Protoplastos Vegetales - biorreactor de Levantamiento por Aire (O2) en Régimen Laminar (Re≤2300)

Los protoplastos son células vegetales desprovistas de su pared celular, esto se logra utilizando enzimas proteolíticas (proteasas y lipasas) que degradan la pared celular. Actualmente, el cultivo de protoplastos no es muy acostumbrado, pero de realizarse, requiere de una cama de aire (burbujas muy finas) que opere en régimen laminar (Re≤2300), para evitar los esfuerzos cortantes (esquileo) e hidrodinámicos (agitación) generados en el medio de cultivo dañen (lisis celular) las células en suspensión (tamaño de Kolmogorov de los Eddies). También es indispensable que el medio de cultivo contenga las proteasas y lipasas necesarias para evitar la regeneración de la pared celular.

Células Animales – biorreactor de Lecho Fluidizado (O2)

Los cultivos de células animales requieren de proximidad mutua y de un soporte sólido (anclaje) para interactuar (comunicación célula-célula) y poder metabolizar (producir); esto por cuanto, las células animales, por lo general, no son independientes y deben estar unidas a un sistema (p.ej; hepático) para funcionar adecuadamente. Para suministrar esa proximidad y el soporte necesario, los diseños de biorreactores para células animales deben aumentar la densidad celular (concentrar) de las células en cultivo. Una forma de hacerlo es incorporar un lecho fluidizado formado por cantidad de microesferas acarreadores hechas de material cerámico poroso inerte que, por su tamaño (micrométrico) forman una interfase con el medio de cultivo (fluido) que permite la transferencia de masa (nutrientes y OD), energía (calor) y momentun (agitación) entre el medio de cultivo y las células en cultivo; lo que es llamado lecho fluidizado. Los cultivos celulares animales, por la delicada naturaleza de las membranas plasmáticas requieren además de oxígeno disuelto (OD) en el medio de cultivo (tamaño de Kolmogorov de los Eddies) y de un régimen de agitación laminar (Re≤2300).

Células Inmovilizadas – biorreactor de Fibra Hueca (O2)

La inmovilización celular es otra forma de lograr proximidad celular y aumentar la densidad celular y la concentración de metabolitos dentro de las células. La inmovilización es un método mucho más eficiente y logra rendimientos muy superiores a los del lecho fluidizado. Pero, los fenómenos de transferencia (masa, momentun y energía) se ven muy limitados por la inmovilidad. Esto es especialmente crítico en cultivos de células de mamífero por cuanto ya célula no recibe la nutrición adecuada.
Los reactores de fibra hueca son los dispositivos más utilizados para inmovilizar y concentrar cultivos celulares animales. Su diseño consiste en una batería de fibras hueca y porosa en su interior, colocadas en paralelo. Las células se concentran y aumenta la densidad celular, en los intersticios de las fibras huecas. El medio de cultivo fluye en contrasentido desde el exterior del reactor o a través de una carcasa como si fuera un intercambiador de calor de doble tubo. Para solventar el problema de la escasa transferencia de masa (nutrientes y OD) dentro de la fibra hueca, un diseño novedoso es el tambor rotativo en el cual, el tambor externo rota sobre la batería de fibras huecas, generando una circulación constante de masa y de momentun, aumentando las tazas de transferencia.

Células empaquetadas - biorreactor de Lecho Empacado (O2)

El empaquetamiento celular es una forma menos drástica de inmovilización; pues ésta es parcial. También tiene el objetivo de aumentar la concentración y la densidad celular; pero al no estar enclaustradas las células, la transferencia de masa es mayor, aunque siempre limitada. Un lecho empacado es una matriz de soporte sólido que retiene las células, bien por geometría (dentro de los intersticios o espacios huecos de la matriz), bien por afinidad (paso o adherencia selectiva). Un biorreactor con este propósito debe contener un lecho de soporte sólido, sumergido en el medio de cultivo. La oxigenación generalmente se realiza en el exterior del lecho, a través del medio de cultivo.

Cultivos enzimáticos – Reactores de Lecho Catalítico

Los cultivos enzimáticos se comportan en algunos aspectos como cultivos celulares y en otros como reactivos químicos. Debido a que un sustrato enzimático es un catalítico de una reacción biológica, la cinética de estos reactores puede simularse como la química, pero sin olvidar que el compuesto es biológico. Los sustratos enzimáticos deben estar anclados a un lecho semisólido o a uno semifluido - según sea el caso - dependiendo de la naturaleza enzimática del sustrato; que por la naturaleza de la enzima se conocen como lechos catalíticos. Muchas veces el medio de cultivo, además de la enzima, requiere, para un sustrato determinado, su respectivo precursor metabólico llamado cofactor, más algún componente especial que agilice el proceso metabólico.

Modo de Operación y Sistemas de Cultivo

El modo de operación de un sistema de cultivo, es sinónimo del modo de operar del biorreactor o fermentador. Éste no solo influye en el diseño propio del reactor, también, en el modelo cinético de crecimiento del cultivo y en el proceso de producción. Existen tres modos de cultivo aunados a tres modos básicos de operación:
  • Discontinuo(batch): por lotes o tandas, sin alimentación (F); se coloca dentro del biorreactor la carga total de cada proceso (tanda o lote) de cultivo o fermentación y se dejar que se lleve a cabo el proceso productivo o la fermentación por el tiempo que sea necesario; el cuál se denomina tiempo de retención.
  • Semicontinuo (feed batch): por lotes alimentados, con alimentación de entrada (F1); se alimenta una línea de entrada o alimentación (F1) para que el sistema de cultivo tenga un producto (biomasa) con máximo de crecimiento (exponencial) y aumente la productividad.
  • Continuo (continuos): por quimioestato, se alimenta una línea de entrada F1 o alimentación y se drena una línea de salida F2 o lavado; de manera que los flujos o caudales de ambas líneas sean iguales y la producción sea contínua.

No hay comentarios:

Publicar un comentario